Math Virtual Learning

Algebra IIB

The Data Unit - Graphing Numerical Data
April 24, 2020

Algebra IIB
 Lesson: April 24, 2020

Objective/Learning Target: Students will create and interpret stem-and-leaf plots and dot plots

Let's Get Started:

Recall the definitions of Categorical and Numerical Data. Sort the types of data on the right into either "Categorical" or "Numerical"

Categorical Data - Data that can be sorted into groups and then counted, for example: gender, grade level, color, state lived in ... You can identify categorical data by seeing if the order of the categories makes a difference. For instance, if I am looking at the colors of M\&Ms, there is not a specific "starting" color.

Numerical/Quantitative Data - Numerical

 data is data that is measurable, such as time, height, weight, amount, and so on. You can help yourself identify numerical data by seeing if you can average or order the data in either ascending or descending order.1. Male or female
2. Highest Level of Education
3. Test scores
4. Temperature in Alaska
5. Political Party Affiliation
6. Average salaries of doctors
7. Work Status: Full-time, part-time, unemployed
8. Level of pollutants

Categorical: 1, 2, 5, 7
Numerical: 3, 4, 6, 8

Examples of Numerical/Quantitative Graphs

DOT PLOT

All of the data on these types of graphs can be ORDERED. Because of the order, there is a SHAPE to the data, a CENTER to the data and a visible SPREAD of the data. We can also easily see any unusual data (OUTLIERS).

STEM-AND-LEAF PLOT
Race Running Times in Seconds

Stem	Leaves
12	26
13	025
14	1246
15	2378
16	12468
17	578
18	13

Key: $14 \mid 2=14.2$ seconds

Stem-and-Leaf and Dot Plots

These two graph types plot every single data point in a data set. This gives you a very precise picture of what the data looks like. These graphs are not very good for very large data sets.

Dot Plots

To make a dot plot, look at the data and find the largest and smallest number. Make a number line listing all the numbers from smallest to largest. Then carefully place a dot the corresponding number for each data point. Example:

Age Assumed Office

Senator	Age
Bob Corker	54
Mitch McConnell	42
Elizabeth Warren	63
Bill Nelson	58
Rob Portman	55

Senator	Age		Senator	Age
Bernie Sanders	65		Barbara Mikulski	50
Roger Wicker	56		Jack Reed	47
Ted Cruz	42		Susan Collins	44
Pat Roberts	60		Al Franken	58

Senator	Age
Ron Johnson	55
Angus King	68
Ben Cardin	63
Claire McCaskill	53

Make a dot plot for the following 2 data sets:

1)

Academy Awards

Movie	\#Awards		Movie	\# Awards
Platoon	4		It Happened One Night	5
The Broadway Melody	1		The Best Years of Our Lives	7
Shakespeare in Love	7		You Can't Take It with You	2
Unforgiven	4		Cavalcade	3
Kramer vs. Kramer	5		Gone with the Wind	8

Movie	\# Awards
Braveheart	5
How Green Was My Valley	5
All Quiet on the Western Front	2
The Departed	4
The Greatest Show on Earth	2

2)

Sales Tax

State	Percent		State	Percent		State	Percent	
	State	Percent						
North Carolina	5	Arkansas	7		Arizona	6		Missouri

Dot Plot Answers

1)

Academy Awards

Movie	\# Awards	Movie	\# Awards	Movie	\# Awards
Platoon	4	It Happened One Night	5	Braveheart	5
The Broadway Melody	1	The Best Years of Our Lives	7	How Green Was My Valley	5
Shakespeare in Love	7	You Can't Take It with You	2	All Quiet on the Western Front	2
Unforgiven	4	Cavalcade	3	The Departed	4
Kramer vs. Kramer	5	Gone with the Wind	8	The Greatest Show on Earth	2

2)

Sales Tax

State	Percent	State	Percent	State	Percent		State
	Percent						
North Carolina	5	Arkansas	7		Arizona	6	
Missouri	4						
New Mexico	5	South Carolina	6		Mississippi	7	
Nevada	7						
Illinois	6	Wyoming	4		Maryland	6	
Alabama	4						
Pennsylvania	6		New Hampshire	0		Michigan	6
		California	8				
Maine	6						

Stem

-and-

Leaf

 Plots1. A stem and leaf plot is a method used to organize statistical data. The greatest common place value of the data is used to form the stem. The next greatest common place value is used to form the leaves.

2. EXAMPLE: Make a stem and leaf plot of the algebra test scores given below. Then complete each question.
$56,65,98,82,64,71,78,77,86,95,91,59$, 69, 70, 80, 92, 76, 82, 85, 91, 92, 99, 73

$56,59,64,65,69,70,71,73,76,77,78,80$, 82, 82, 85, 86, 91, 91, 92, 92, 95, 98, 99
 units digit, 6 , to the right of stem 5 .

Use the stem and leaf plot to answer these questions.
9. What is the best test score?
10. How many students took the test?
11. How many students scored 90 ?

History Test Scores

12. What is the lowest score?
13. Find the difference between the high and low scores.

Use the ages of the people who attended a gymnastics meet to complete $14-17$.
14. Make a stem and leaf plot of the data.
15. How many people attended the meet?
16. What are the ages of the youngest and oldest persons attending?

$$
\begin{array}{r}
\text { AGES: } \begin{aligned}
& 12,17,15,14,19,17,13, \\
& 16,15,16,17,18,24,23, \\
& 28,45,48,36,12,23,15, \\
& 14,13,15,17,18,19,15, \\
& 15,16,16,16,16,17
\end{aligned}
\end{array}
$$

17. Which age group was more widely represented?

Use the stem and leaf plot to answer these questions.
9. What is the best test score? $\boldsymbol{\rightarrow} \mathbf{1 0 0}$
10. How many students took the test? $\boldsymbol{\rightarrow} \mathbf{3 0}$
11. How many students scored 90 ? $\boldsymbol{\rightarrow} \mathbf{2}$

History Test Scores							
Stem	Leaf						
6	1	1	4	7			
7	2	35	5				
8	1	35	5	6	7	7	89
9	0	03	3	6	8	9	
10	0	0					

12. What is the lowest score? $\rightarrow \mathbf{7 1}$
13. Find the difference between the high and low scores. $\boldsymbol{\rightarrow} 39$

Use the ages of the people who attended a gymnastics meet to complete 14-17.
14. Make a stem and leaf plot of the data.
Stem

1	Leaf
$\mathbf{2}$	223344555555666666777778899
3	$\mathbf{3 3 4 8}$
$\mathbf{4}$	$\mathbf{5 8}$

AGES: 12, 17, 15, 14, 19, 17, 13, $16,15,16,17,18,24,23$, $28,45,48,36,12,23,15$, $14,13,15,17,18,19,15$, $15,16,16,16,16,17$
15. How many people attended the meet? $\boldsymbol{\rightarrow} 34$
16. What are the ages of the youngest and oldest persons attending? $\boldsymbol{\rightarrow} \mathbf{1 2}$ years and 48 years
17. Which age group was more widely represented? \rightarrow teens

Back-to-Back Stem and Leaf Plots

Back-to-Back Stem and Leaf Plots let you compare 2 sets of data that have the same stem in order to make comparisons. Watch this video Back-to-Back Stem and Leaf Plots and then complete the 3 practice problems.

A	128	509	129	943	505	125	129	506	945	127
B	942	126	507	126	943	509	942	124	504	947

2) \quad| A | 6.5 | 8.1 | 1.3 | 8.9 | 3.4 | 8.1 | 3.6 | 6.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| B | 1.9 | 3.7 | 6.9 | 1.2 | 8.2 | 6.8 | 1.4 | 3.5 |
3)

A	46	76	27	48	47	29	76	46	27	71	43
B	27	49	74	26	75	45	29	76	41	26	74

Leaf B	Stem	Leaf A	
Key: $3 \mid 6=$			

1)

A	128	509	129	943	505	125	129	506	945	127
B	942	126	507	126	943	509	942	124	504	947

Leaf B		Stem	Leaf A				
6	6	4	12	5	7	8	9
9	9	4	50	5	6	9	
7	3	2	2	94	3	5	

$$
\text { Key: } 12 \mid 7=127
$$

2)

A	6.5	8.1	1.3	8.9	3.4	8.1	3.6	6.7
B	1.9	3.7	6.9	1.2	8.2	6.8	1.4	3.5

A	46	76	27	48	47	29	76	46	27	71	43
B	27	49	74	26	75	45	29	76	41	26	74

Leaf B		Stem	Leaf A		
9	4	2	1	3	
	7	5	3	4	6
9	8	6	5	7	
2					
Key: $3 \mid 6=$	8	1	1	9	

Leaf B				Stem	Leaf A				
9	7	6	6	2	7	7	9		
	9	5	1	4	3	6	6	7	8
6	5	4	4	7	1	6	6		
Key: $4 \mid 8=$					48				

